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Abstract
We present a novel algorithm to compute large itemsets online. The user is free
to change the support threshold any time during the first scan of the transaction
sequence. The algorithm maintains a superset of all large itemsets and for each
itemset a shrinking, deterministic interval on its support. After at most 2 scans the
algorithm terminates with the precise support for each large itemset. Typically our
algorithm is by an order of magnitude more memory efficient than Apriori or DIC.1

An earlier version of this report appeared as Technical Report UCB//CSD-98-1004, Department
of Electrical Engineering and Computer Science, University of California at Berkeley.



1 Introduction

Mining for association rules is a form of data mining introduced in [AIS93]. The
prototypical example is based on a list of purchases in a store. An association rule for
this list is a rule such as “85% of all customers who buy product A and B also buy
product C and D”. Discovering such customer buying patterns is useful for customer
segmentation, cross-marketing, catalog design and product placement.

We give a problem description which follows [BMUT97]. The support of an itemset
(set of items) in a transaction sequence is the fraction of all transactions containing the
itemset. An itemset is called large if its support is greater or equal to a user-specified
support threshold, otherwise it is called small. An association rule is an expression
X ⇒ Y where X and Y are disjoint itemsets. The support of this rule is the support
of X ∪ Y . The confidence of this rule is the fraction of all transactions containing X
that also contain Y , i.e. the support of X ∪ Y divided by the support of X. In the
example above, the “85%” is the confidence of the rule {A,B} ⇒ {C,D}. For an
association rule to hold, it must have a support ≥ a user-specified support threshold
and a confidence ≥ a user-specified confidence threshold. Existing algorithms proceed
in 2 steps to compute association rules:

1. Find all large itemsets.

2. For each large itemset Z, find all subsets X, such that the confidence of X ⇒
Z\X is greater or equal to the confidence threshold.

We address the first step, since the second step can already be computed online,
c.f. [AY97]. Existing large itemset computation algorithms have an offline or batch
behaviour: given the user-specified support threshold, the transaction sequence is
scanned and rescanned, often several times, and eventually all large itemsets are
produced. However, the user does not know, in general, an appropriate support
threshold in advance. An inappropriate choice yields, after a long wait, either too
many or too few large itemsets, which often results in useless or misleading association
rules.

Inspired by online aggregation, c.f. [Hel96, HHW97], our goal is to overcome these
difficulties by bringing large itemset computation online. We consider an algorithm to
be online if: 1) it gives continuous feedback, 2) it is user controllable during processing
and 3) it yields a deterministic and accurate result. Random sampling algorithms
produce results which hold with some probability < 1. Thus we do not view them as
being online.

In order to bring large itemset computation online, we introduce a novel algorithm
called Carma (Continuous Association Rule Mining Algorithm). The algorithm needs,
at most, two scans of the transaction sequence to produce all large itemsets.

During the first scan, the algorithm continuously constructs a lattice of all po-
tentially large itemsets (large with respect to the scanned part of the transaction se-
quence). For each set in the lattice, Carma provides a deterministic lower and upper
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bound for its support. We continuously display, e.g. after each transaction processed,
the resulting association rules to the user along with bounds on each rule’s support
and confidence. The user is free to adjust the support and confidence thresholds at
any time. Adjusting the support threshold may result in an increased threshold for
which the algorithm guarantees to include all large itemsets in the lattice. If satisfied
with the rules and bounds produced so far, the user can stop the rule mining early.

During the second scan, the algorithm determines the precise support of each set
in the lattice and continuously removes all small itemsets.

Existing algorithms need to rescan the transaction sequence before any output is
produced. Thus, they can not be used on a stream of transactions read from a network
for example. In contrast, using Carma’s first-scan algorithm, we can continuously
process a stream of transactions and generate the resulting association rules online,
not requiring a rescan.

While not being faster in general, Carma outperforms Apriori and DIC on low
support thresholds and is up to 60 times more memory efficient.

2 Overview

The paper is structured as follows: In Section 3, we put our algorithm in the context of
related work. In Section 4, we give a sketch of Carma. It uses two distinct algorithms
PhaseI and PhaseII for the first and second scan respectively. In Section 5 we describe
PhaseI in detail. In Subsection 5.1 we introduce support lattices and support sequences,
the building blocks for the PhaseI algorithm presented in Subsection 5.2. We illustrate
PhaseI on an example in Subsection 5.3. We discuss changing support thresholds in
Subsection 5.4. After a short description of PhaseII in Subsection 6.1, we combine
in Subsection 6.2 PhaseI with PhaseII, yielding Carma. In Section 7 we discuss our
implementation. After a brief discussion of implementational details in Subsection
7.1, we compare in Subsection 7.2 the performance of Carma with Apriori and DIC.
In Subsection 7.3 we analyze how the support intervals evolve during the first scan.
We end with our conclusion in Section 8. In Appendix A we summarize performance
results of Apriori, Carma and DIC on further datasets. In Appendix B we further
discuss our theoretical bounds on the support intervals. In Appendix C we give a
formal proof of correctness for PhaseI. In Appendix D we introduce a forward pruning
technique for PhaseII and prove its correctness.

3 Related Work

Most large itemset computation algorithms are related to the Apriori algorithm due to
Agrawal & Srikant, c.f. [AS94]. See [AY98] for a survey of large itemset computation
algorithms. Apriori exploits the observation that all subsets of a large itemset are
large themselves. It is a multi-pass algorithm, where in the k-th pass all large itemsets
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of cardinality k are computed. Hence Apriori needs up to c+1 scans of the database
where c is the maximal cardinality of a large itemset.

In [SON95] a 2-pass algorithm called Partition is introduced. The general idea is
to partition the database into blocks such that each block fits into main-memory. In
the first pass, each block is loaded into memory and all large itemsets, with respect
to that block, are computed using Apriori. Merging all resulting sets of large itemsets
then yields a superset of all large itemsets. In the second pass, the actual support
of each set in the superset is computed. After removing all small itemsets, Partition
produces the set of all large itemsets.

In contrast to Apriori, the DIC (Dynamic Itemset Counting) algorithm counts
itemsets of different cardinality simultaneously, c.f. [BMUT97]. The transaction se-
quence is partioned into blocks. The itemsets are stored in a lattice which is initialized
by all singleton sets. While a block is scanned, the count (number of occurences) of
each itemset in the lattice is adjusted. After a block is processed, an itemset is added
to the lattice if and only if all its subsets are potentially large, i.e. large with respect
to the part of the transaction sequence for which its count was maintained. At the
end of the sequence, the algorithm rewinds to the beginning. It terminates when
the count of each itemset in the lattice is determined. Thus after a finite number
of scans, the lattice contains a superset of all large itemsets and their counts. For
suitable block sizes, DIC requires fewer scans than Apriori.

We note that all of the above algorithms: 1) require that the user specifies a fixed
support threshold in advance, 2) do not give any feedback to the user while they are
running and 3)may need more than two scans (except Partition). Carma, in contrast:
1) allows the user to change the support threshold at any time, 2) gives continuous
feedback and 3) requires at most two scans of the transaction sequence.

Random sampling algorithms have been suggested as well, c.f. [Toi96, ZPLO96].
The general idea is to take a random sample of suitable size from the transaction se-
quence and compute the large itemsets using Apriori or Partition with respect to that
sample. For each itemset, an interval is computed such that the support lies within
the interval with probability ≥ some threshold. Carma, in contrast, deterministically
computes all large itemsets along with the precise support for each itemset.

Several algorithms based on Apriori were proposed to update a previously com-
puted set of large itemsets due to insertion or deletion of transactions, c.f. [CHNW96,
CLK97, TBAR97]. These algorithms require a rescan of the full transaction sequence
whenever an itemset becomes large due to an insertion. Carma, in contrast, requires
a rescan only if the user needs the precise support of the additional large itemsets,
instead of the continuously shrinking support intervals provided by PhaseI.

In [AY97] an Online Analytical Processing (OLAP)-style algorithm is proposed
to compute association rules. The general idea is to precompute all large itemsets
relative to some support threshold s using a traditional algorithm. The association
rules are then generated online relative to an interactively specified confidence thresh-
old and support threshold ≥ s. We note that: 1) the support threshold s must be
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specified before the precomputation of the large itemsets, 2) the large itemset com-
putation remains offline and 3) only rules with support ≥ s can be generated. Carma
overcomes these difficulties by bringing the large itemset computation itself online.
Thus, combining Carma’s large itemset computation with the online rule generation
suggested in [AY97] brings both steps online, not requiring any precomputation.

4 Sketch of the Algorithm

Carma uses distinct algorithms, called PhaseI and PhaseII, for the first and second
scan of the transaction sequence. In this section, we give a sketch of both algorithms.
For a detailed description and formal definition see Section 5 and Section 6.

During the first scan PhaseI continuously constructs a lattice of all potentially
large itemsets. After each transaction, it inserts and/or removes some itemsets from
the lattice. For each itemset v, PhaseI stores the following three integers (see Figure
1 below, the itemset {a, b} was inserted in the lattice while reading the j-th transac-
tion, the current transaction index is i):

{ }

1 2 j

{ c }{ a } { b }

{ a, b }

t t tt t i n

maxMissed( { a,b } )

firstTrans( { a,b } )

count( { a,b } )

current transactiontransactions scanned
lattice

Figure 1

count(v) the number of occurences of v since v was inserted in
the lattice.

firstTrans(v) the index of the transaction at which v was inserted
in the lattice.

maxMissed(v) upper bound on the number of occurences of v before
v was inserted in the lattice.

Suppose we are reading transaction i and we have a lattice of the above form. For
any itemset v in the lattice, we then have a deterministic lower bound count(v)/i and
upper bound (maxMissed(v)+ count(v))/i on the support of v in the first i transac-
tions. We denote these bounds by minSupport(v) and maxSupport(v) respectively.
The computation of maxMissed(v) during the insertion of v in the lattice is a central
part of the algorithm. It not only depends on v and i, the current transaction index,
but also on the current and previous support thresholds, since the user may change
the threshold at any time.

After PhaseI has read a transaction, it increments count(v) for all itemsets v
contained in the transaction. Next, it inserts some itemsets in the lattice, comput-
ing maxMissed and setting firstT rans to the current transaction index. Clearly,

4



maxMissed is always less than the current transaction index. Eventually, PhaseI
may remove some itemsets from the lattice if their maxSupport is below the cur-
rent support threshold. At the end of the transaction sequence, PhaseI guarantees
that the lattice contains a superset of all large itemsets relative to some threshold.
The threshold depends on how the user changed the support during the scan, c.f.
Subsection 5.4. We then rewind to the beginning and start PhaseII.

PhaseII initially removes all itemsets which are trivially small, i.e. itemsets with
maxSupport below the last user specified threshold. By rescanning the transaction
sequence, PhaseII determines the precise number of occurences of each remaining
itemset and continuously removes all itemsets, which turn out to be small. Eventually,
we end up with the set of all large itemsets along with their supports.

5 PhaseI Algorithm

In this section, we fully describe the PhaseI algorithm, which constructs a superset of
all large itemsets while scanning the transaction sequence once. In Subsection 5.1 we
introduce support lattices and support sequences, the building blocks for PhaseI. We
present the PhaseI algorithm itself in Subsection 5.2. We illustrate the algorithm on
an example in Subsection 5.3 and conclude this section with a discussion of changing
support thresholds in Subsection 5.4.

5.1 Support Lattice & Support Sequence

For a given transaction sequence and an itemset v, we denote by supporti(v) the
support of v in the first i transactions. Let V be a lattice of itemsets such that for
each itemset v ∈ V we have the three associated integers count(v), firstT rans(v)
and maxMissed(v) as defined in Section 4. We call V a support lattice (up to i
and relative to the support threshold s) if and only if V contains all itemsets v with
supporti(v) ≥ s. Hence, a support lattice is a superset of all large itemsets.

t t100 t100t 10t 10 t 7070

threshold
support

support sequence

transactions

ceiling up to 100

ceiling up to 10 ceiling up to 70

Figure 2

For each transaction processed, the user is free to specify an arbitrary support
threshold. Thus we get a sequence of support thresholds σ = (σ1, σ2, . . .), where σi

denotes the support threshold for the i-th transaction. We call σ a support sequence.
By �σ�i we denote the least monotone decreasing sequence which is up to i pointwise
greater or equal to σ and 0 otherwise (see Figure 2 below). We call �σ�i the ceiling
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of σ up to i. By avgi(σ) we denote the running average of σ up to i, i.e. avgi(σ) =
1
i

∑i
j=1 σj. We note that �σ�i+1 can readily be computed from �σ�i and σi+1, c.f.

Lemma 2 in Appendix C.

5.2 PhaseI Algorithm

In this subsection, we give a full description and formal definition of the PhaseI
algorithm. PhaseI computes a support lattice V as it scans the transaction sequence.
We define V recursively:

Initially PhaseI sets V to {∅} with count(∅) = 0, firstT rans(∅) = 0 and
maxMissed(∅) = 0. Thus V is a support lattice for the empty transaction sequence.

Let V be a support lattice up to transaction i − 1. We read the i-th transaction
ti and want to transform V into a support lattice up to i. Let σi be the current
user-specified support threshold. To maintain the lattice we proceed in three steps:
1) increment the count of all itemsets occuring in the current transaction, 2) insert
some itemsets in the lattice and 3) prune some itemsets from the lattice.

1) Increment: We increment count(v) for all itemsets v ∈ V that are contained in
ti, maintaining the correctness of all integers stored in V .

2) Insert: We insert a subset v of ti in V if and only if all subsets w of v are already
contained in V and are potentially large, i.e. maxSupport(w) ≥ σi. This corresponds
to the observation that the set of all large itemsets is closed under subsets. Inserting
v in V , we set firstT rans(v) = i and count(v) = 1, since v is contained in the current
transaction ti. Since supporti(w) ≥ supporti(v) for all subsets w of v and w ⊂ ti we
get

maxMissed(v) ≤ maxMissed(w) + count(w)− 1.
By the following Theorem 1 we have

supporti−1(v) > avgi−1(�σ�i−1) +
|v|−1
i−1

implies v ∈ V .
Since v is not contained in V yet, we get thereby

supporti−1(v) ≤ avgi−1(�σ�i−1) +
|v| − 1

i− 1
. (1)

Since maxMissed(v) is an integer2 we get by inequality (1)
maxMissed(v) ≤ 
(i− 1)avgi−1(�σ�i−1)�+ |v| − 1.

Thus we define maxMissed(v) as

min { 
(i− 1)avgi−1(�σ�i−1)�+ |v| − 1,

maxMissed(w) + count(w)− 1 |w ⊂ v }. (2)

In particular we get maxMissed(v) ≤ i− 1, since the emptyset is a subset of v, ∅ is
an element of V and the count of ∅ equals i, the current transaction index.

For a real number x we denote by 
x� the largest integer less or equal to x, i.e. 
x� = max{i ∈
Z | x ≥ i}.
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3) Prune: We prune the lattice by removing all itemsets of cardinality ≥ 2 with a
maxSupport below the current support threshold σi, i.e. all small itemsets containing
at least 2 items. Since pruning incurs a considerable overhead we only prune every
�1/σi� or every 500 transactions3, whichever is larger. We note that any heuristic
pruning strategy is admissible as long as only small itemsets are removed and when-
ever an itemset is removed all its supersets are removed as well. We chose the above
pruning strategy for its memory efficiency. Note that in this strategy 1-itemsets are
never pruned. Thus an item, which is not contained in the lattice, did not appear in
the transaction sequence so far. Hence the strategy allows us to set maxMissed to 0
whenever a 1-itemset is inserted in the lattice.

The resulting PhaseI algorithm is depicted in figure 3.

Function PhaseI( transaction sequence (t1, . . . , tn),
support sequence σ = (σ1, . . . , σn) ) : support lattice;

support lattice V ;
begin
V := {∅}, maxMissed(v) := 0, firstT rans(v) := 0 count(v) := 0.
for i from 1 to n do
// 1) Increment
for all v ∈ V with v ⊆ ti do count(v) + +; od;
// 2) Insert
for all v ⊆ ti with v 
∈ V do
if ∀w ⊂ v : w ∈ V and maxSupport(w) ≥ σi then
V := V ∪ {v};
firstT rans(v) := i;
count(v) := 1;
maxMissed(v) := min{ 
(i− 1)avgi−1(�σ�i−1)�+ |v| − 1,

maxMissed(w) + count(w)− 1 |w ⊂ v };
if |v| == 1 then maxMissed(v) := 0; fi;

fi;
od;
// 3) Prune
if ( i % max{�1/σi�, 500} ) == 0 then
V := {v ∈ V |maxSupport(v) ≥ σi or |v| == 1 };

fi;
od;
return V ;

end; Figure 3

The correctness of the algorithm is given by the following theorem:

For a real number x we denote by �x� the least integer greater or equal to x, i.e. �x� = min{i ∈
Z | x ≤ i}.
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Theorem 1 Let V be the lattice returned by PhaseI(T, σ) for a transaction sequence
T of length n and support sequence σ.

Then V is a support lattice relative to the support threshold

avgn(�σ�n) + c+ 1

n
(3)

with c the maximal cardinality of a large itemset in T . For any itemset v

supportn(v) > avgn(�σ�n) + |v| − 1

n
implies v ∈ V.

Proof: By double induction on c and n. For a detailed proof see Theorem 2 in
Appendix C.

We illustrate Theorem 1 and in particular the support threshold given by (3) in
Subsection 5.4. We omitted any optimization in the definition of PhaseI. For example,
the incrementation and insertion step can be accomplished by traversing the support
lattice once. We illustrate the algorithm itself on a simple example in the following
Subsection 5.3.

5.3 Example

We illustrate in this subsection the PhaseI algorithm on a simple example, namely
on the transaction sequence T = ({a, b}, {a, b, c}, {b, c}) and the support sequence
σ = (0.3, 0.9, 0.7), see Figure 4 below. As indicated we denote by the triple the three
associated integers for each set in the support lattice V and by the interval the bounds
on its support.

We initialize V to {∅} and the associated integers of ∅ to (0, 0, 0).

{ }

[1,1]

{ a } { b }

[1,1] [1,1]

[1,1]

{ }

{ a }

[1,1]

{ b }

[1,1]

{ c }

[0.5,0.5]

{ a }

[0.66,0.66]

{ b }

[1,1]

{ a, b } { a, b }

[0.33,0.66]

(0,1,1) (0,1,1) (0,1,2) (0,1,2)

(1,2,1)
[0.5,1]

(0,1,2) (0,1,3)

(1,2,1)

{ }

3

V V

[ minSupport, maxSupport ]

(0,0,0)

[0,0]

V

σ σ σ = 0.31 2 3

(0,0,1)
(0,0,2)

(0,2,1)

t  = { b, c }

 = 0.9

V

[1,1]

{ }

(0,0,3)

[0.33,0.66]

{ b, c }
(1,3,1)

t  = { a, b }

 = 0.5

(0,2,2)
[0.66,0.66]

1 2t  = { a, b, c }

( maxMissed, firstTrans, count )

{ c }

Figure 4

Reading t1 = {a, b} we first increment the count of ∅, since ∅ ⊆ t1. Because the empty
set is the only strict subset of a singleton set and 1 = maxSupport(∅) ≥ σ1, we add
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the singletons {a} and {b} to V . By maxMissed = 0 for all singleton sets, we set
their associated integers to (0, 1, 1). Since there is no set in V withmaxSupport < 0.3,
we can not prune an itemset from V and the first transaction is processed.

Reading t2 = {a, b, c} we first increment count for ∅, {a} and {b}. As above we
insert the singleton set {c}, setting maxMisssed to 0. Since {a, b} ⊆ t2 and {a},
{b} are elements of V with a maxSupport ≥ σ2 = 0.9, we insert {a, b} in V . Since
�σ�1 = (0.3, 0, 0, . . .) we get avg1(�σ�1) = 0.3 and


(2 − 1)avg1(�σ�1)�+ 2 − 1 = 1.
Hence maxMissed({a, b}) = 1 by equality (2) of Subsection 5.2, since
maxMissed(w) + count(w) = 2 for w = {a} and w = {b}. We set the associ-
ated integers of {a, b} to (1, 2, 1). We note that maxSupport({a, b}) = 1 is a sharp
upper bound, since support2({a, b}) = 1.

Reading t3 = {b, c} we increment the count of ∅, {b} and {c}. We then insert {b, c}
since {b} and {c} are elements of V with maxSupport above the new user defined
support threshold σ3 = 0.5. By �σ�2 = (0.9, 0.9, 0, 0, . . .) we get avg2(�σ�2) = 0.9 and
hence 
(3− 1) · 0.9�+2− 1 = 2. Since maxMissed({c})+ count({c})− 1 = 1 we get

maxMissed({b, c, }) = min{2, 1} = 1.
Because all itemsets have a maxSupport greater than 0.5 we can not remove any
itemsets from the lattice. If σ3 was 0.7 instead of 0.5 we would not have inserted
{b, c} while we could have removed {a, b}. However we could not have removed {c},
since our pruning strategy during PhaseI never removes singelton sets.

5.4 Changing Support Thresholds

We discuss in this subsection constant and changing support thresholds. PhaseI
guarantees that all itemset with a support greater or equal to the support threshold
given by Theorem 1 are included in the itemset lattice. We denote by the guaranteed
support threshold this threshold, i.e.

avgn(�σ�n) + c+ 1

n
(4)

with σ the support sequence, c the maximal cardinality of a large itemset and n the
current transaction index.

First, suppose the user does not change the support threshold. Hence we have a
constant support sequence σ = (s, s, s, . . .) for some s. By (4) and avgn(�σ�n) = s
PhaseI includes at transaction n all large itemsets with a support ≥ s + c+1

n
. Thus,

the guaranteed threshold s + c+1
n

converges to the user specified support threshold s
as PhaseI scans the transaction sequence. To improve the speed of convergence, we
run PhaseI with a lower threshold of s · 0.9 instead of s. As the guaranteed threshold
reaches s, we increase the threshold again from s · 0.9 to s, see Figure 5.
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Next, consider changing support thresholds. Figure 6 depicts a scenario, where
the user increases at transaction 5’000 the initial support threshold of 0.75% to 1.25%
and then lowers it again to 1.0% at transaction 10’000. As above, we supply PhaseI
with thresholds σi lower than the user specified threshold, whenever the guaranteed
threshold does not equal the user specified threshold. We set σi, the support sequence
supplied to Carma, to 0.9 · 0.75% = 0.68% for i = 1, . . . , 4′999. The guaranteed
threshold (4) drops quickly 4, reaching a value well below 1% at transaction 4’999.
Since the new user specified threshold of 1.25% at transaction 5′000 is greater than
1%, we have equality until transaction 9’999. Hence we set σi to 1.25% for i =
5′000, . . . , 9′999. As the user lowers the threshold to 1% we set σi to 0.9 · 1% = 0.9%
from i = 10′000 until the guaranteed threshold reaches 1.0% at transaction 35’000.
We reset σi to 1% for all i > 35′000, since the user defined threshold remains at 1%
from now on.

We note that the guaranteed threshold is an upper bound and thus a worst-case
threshold. Typically, all large itemsets are contained in the lattice well before the
guaranteed threshold reaches the user specified threshold.

6 Carma

In Subsection 6.1 we give a short description of PhaseII, the algorithm for the second
scan. We then combine in Subsection 6.2 PhaseI with PhaseI, yielding Carma.

6.1 PhaseII

Let V be the support lattice computed by PhaseI and let σn be the user specified
support threshold for the last transaction read during the first scan. PhaseII prunes all
small itemsets from V and determines the precise support for all remaining itemsets.

For this example we assumed that all large itemsets or of cardinality 10 or less, i.e. c = 10.
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Initially PhaseII removes all trivially small itemsets, i.e. itemsets with
maxSupport < σn, from V . Scanning the transaction sequence, PhaseII increments
count and decrements maxMissed for each itemset contained in the current trans-
action, up to the transaction at which the itemset was inserted. Setting maxMissed
to 0 we get minSupport = maxSupport, the actual support of the itemset. We re-
move the itemset if it is small. Setting maxMissed(v) = 0 for an itemset v may
yield maxSupport(w) > maxSupport(v) for some superset w of v. Thus we set
maxMissed(w) = count(v)− count(w) for all supersets w of v with

maxSupport(w) > maxSupport(v).
PhaseII terminates as soon as the current transaction index is past firstT rans for
all itemsets in the lattice. The resulting lattice contains all large itemsets along with
the precise support for each itemset. The algorithm is shown in figure 7. Using
Theorem 1 it is possible to determine that some itemset with maxSupport > σn is
small before we reach its firstT rans transaction. Pruning these itemsets and all
their supersets speeds up PhaseII by reducing the lattice size as well as the part of
the transaction sequence which needs to be rescanned, c.f. Appendix D.

Function PhaseII( support lattice V , transaction sequence (t1, . . . , tn),
support sequence σ ) : support lattice;

integer ft, i = 0;
begin
V := V \{v ∈ V |maxSupport(v) < σn };
while ∃v ∈ V : i < firstT rans(v) do
i++;
for all v ∈ V do
ft := firstTrans(v);
if v ⊆ ti and ft < i then count(v)++, maxMissed(v)- -; fi;
if ft == i then
maxMissed(v) := 0;
for all w ∈ V : v ⊂ w and maxSupport(w) > maxSupport(v) do
maxMissed(w) := count(v)− count(w);

od;
fi;
if maxSupport(v) < σn then V := V \{v}; fi;

od; od;
return V ;

end; Figure 7

6.2 Carma

Executing PhaseII after PhaseI, we get Carma, c.f. Figure 8. By Theorem 1 PhaseI
produces a superset of all large itemsets with respect to the guaranteed threshold.
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PhaseII removes an itemset from the superset if and only if it is small. Thus the
resulting itemset contains all large itemsets.

Function Carma( transaction sequence T , support sequence σ ) :
support lattice;

support lattice V ;
begin
V := PhaseI( T , σ );
V := PhaseII( V , T , σ );
return V ;

end; Figure 8

7 Implementation

To asses the performance we tested Carma along with Apriori and DIC on synthetic
data generated by the IBM test data generator, c.f. [AS94] 1 . We illustrate our
findings on the synthetic dataset with 100’000 transactions of an average size of 10
items chosen from 10’000 items and an average large itemset size of 4 (T10.I4.100K
with 10K items). For runs on further datasets see Appendix A. All experiments were
performed on a lightly loaded 300 MHz Pentium-II PC with 384 MB of RAM. The
algorithms were implemented in Java on top of the same itemset lattice implementa-
tion. We cross compiled the Java class files to an executable using Tower Technology’s
TowerJ 2.2.

7.1 Implementation Details

Our implementation of an itemset lattice differs from a hashtree in that all itemsets
are stored in a single hashtable. With the itemsets as keys, we can quickly access any
subset of a given itemset. This is important for Carma, since whenever Carma inserts
a new itemset v, it accesses all its maximal subsets to compute maxMissed(v). We
represent the lattice structure by associating to each itemset the set of all further
items appearing in any of its supersets, c.f. [Bay98]. As in the case of a hashtree,
we need only one hashtable access to pass from an itemset to one of its minimal
supersets. Thus we can enumerate all subsets of a scanned transaction, which are
contained in the lattice, as quickly as in a hashtree.

Our implementation of Carma diverges from the pseudo-code given in Subsection
5.2 only in that we perform the PhaseI incrementation and insertion step simultane-
ously, enumerating the subsets of a scanned transaction once.

Apriori and DIC were implemented as described in [AS94] and [BMUT97] respec-
tively. For DIC we chose a blocksize of 15000, which we found to be fastest.

http://www.almaden.ibm.com/cs/quest/syndata.html
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7.2 Relative Performance

To compare Carma with Apriori and DIC we ran all three algorithms on a range
of datasets and (constant) support thresholds. In this subsection we illustrate our
results on the T10.I4.100K dataset with 10K items. For support thresholds of 0.5%
and above Apriori outperformed Carma and DIC. We attribute the superior speed of
Apriori for these thresholds to the observation that, for example, at 0.75% only 171
large itemsets existed and all large itemsets were 1-itemsets. Thus Apriori completes
in 2 scans allocating only 300 2-itemsets.
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Figure 9 Figure 10

As the support threshold was lowered to 0.25% (0.1%) the number of large 1-
itemsets increased to 1131 (3509) and the maximal cardinality to 4 (9). We were not
able to run Apriori (DIC) with thresholds below 0.2% (0.25%), since the allocated
itemsets did not fit into main memory anymore. At 0.15% (0.1%) Apriori would
have allocated 2.8 million (6.2 million) 2-itemsets2, while Carma required only 51001
(97872) itemsets. We note that DIC always allocates at least as many itemsets as
Apriori. At 0.25% and below Carma outperformed Apriori and DIC. We attribute
the better performance of Carma over Apriori to the 4 scans needed by Apriori while
Carma completed in 1.1 scans. We attribute the better performance of Carma over
DIC to the 2 scans needed by DIC as well as to the 35 times smaller lattice maintained
by Carma, since both algorithms traverse their lattices in regular intervals.

The number of candidate 2-itemsets which Apriori allocates is given by the number of large
1-itemsets over 2.
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7.3 Support Intervals

PhaseI maintains a superset of the large itemsets in the scanned part of the transaction
sequence, but not necessarily a superset for the full transaction sequence. First, we
wanted to determine the percentage of all large itemsets, i.e. with respect to the
full transaction sequence, contained in the lattice as PhaseI proceeds. After scanning
20000 (40000) transactions at a threshold of 0.1% Carma included 99.3% (99.8%) of
all large itemsets in its lattice, see figure 11.
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Between two pruning steps PhaseI replaced up to 50% of all itemsets. The vast
majority (typically> 95%) of itemsets in the lattice eventually turned out to be small.
As we scan the transaction sequence we would present a large number of association
rules to the user based on itemsets which are likely to be small. To exclude those
itemsets from the rule generation, which are likely to be small, we filtered out all
itemsets which were inserted during the last 15% of the transaction sequence, e.g. at
transaction 20000 we filter out all itemsets which were inserted at transaction 17000
or later. The filtered lattice still contained 93.9% (97.8%) of all large itemsets, after
scanning 20000 (40000) transactions respectively, c.f. figure 9. At the same time the
size of the filtered lattice was reduced to 32.6% (16.0%) of its original size.

Recall that the support interval of an itemset in the lattice is given by its
minSupport and maxSupport. Next, we wanted to determine how the size of the
support intervals, i.e. maxSupport − minSupport, in the filtered lattice evolve as
PhaseI proceeds. After scanning 20000 (40000) transactions at a threshold of 0.1%
the average interval size in the filtered lattice was 0.042% (0.032%), while 50% of all
itemsets in the lattice had an interval size below 0.004% (0.002%), c.f. figure 12.

computed on T10.I4.100K with 10K items at a support threshold of 0.1%
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8 Conclusion

We presented Carma, a novel algorithm to compute large itemsets online. It con-
tinuously produces large itemsets along with a shrinking support interval for each
itemset. It allows the user to change the support threshold anytime during the first
scan and always completes in at most 2 scans.

We implemented Carma and compared it to Apriori and DIC. While not being
faster in general, Carma outperforms Apriori and DIC on low support thresholds. We
attributed this to the observation that Carma is typically an order of magnitude more
memory efficient. We showed that Carma’s itemset lattice quickly approximates a
superset of all large itemsets while the sizes of the corresponding support intervals
shrink rapidly. We also showed that Carma readily computes large itemsets in cases
which are intractable for Apriori or DIC.

An interesting feature of the algorithm is that the second scan ist not needed,
whenever the shrinking support intervals suffice. Thus PhaseI can be used to con-
tinuously compute large itemsets from a transaction sequence read from a network,
generalizing incremental updates and not requiring local storage.

Acknowledgement: I would like to thank Joseph M. Hellerstein, UC Berkeley,
for his inspiration, guidance and support. I am thankful to Ron Avnur for the many
discussions and to Retus Sgier, for his help and suggestions. I would like to thank
Rajeev Motwani, Stanford University, for pointing out the applicability of Carma to
transaction sequences read from a network. Also, I would like to thank Ramakr-
ishnan Srikant, IBM Almaden Research Center, for his remarks on speeding up the
convergence of the support thresholds.
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A Performance Figures
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B Changing Support Thresholds

In this section we discuss the threshold given by Theorem 1, i.e. the support threshold
for which PhaseI guarantees to include all large itemsets.

Let V be the support lattice constructed by PhaseI after the i-th transaction on
a given transaction sequence and support sequence σ = (σ1, σ2, . . .). By Theorem 1
the support lattice V is a superset of all large itemsets relative to the the support
threshold

ρi = avgi(�σ�i) + c+ 1

i
(5)

where c is the maximal cardinality of a large itemset. If the user changed the support
threshold, then ρi can be greater than σi, the current user-specified threshold. In this
subsection, we discuss the relationship between ρi and σi. In particular:

1. The term c+1
i

is desirable.

2. The term avgi(�σ�i) is a sharp lower bound relative to which V is a support
lattice.

3. ρi → σi for i → ∞ in typical scenarios.

1) The term c+1
i

is desirable: Suppose ρi = avgi(�σ�i) would hold instead of (5).
Hence we get ρ1 = σ1 for the first transaction. Every subset of t1 must be contained
in V after the first transaction t1 is processed, since every subset of t1 has support 1 in
the initial transaction sequence (t1). If t1 consist of 30 items, V must contain all 230

subsets, which is clearly not desirable. Thus the term c+1
i

protects the support lattice
constructed by PhaseI from an exponential blow-up during the first few transactions
processed.

2) The term avgi(�σ�i) is a sharp lower bound relative to which V is a support
lattice. Let σ be an arbitrary support sequence. Since �σ�i is greater or equal to σi

up to i, we get avgi(�σ�i) ≥ σi and hence ρi ≥ σi. While V is a superset of all large
itemsets relative to the support threshold ρi it is not guaranteed to be a superset
with respect to σi. By the following example we show that ρi is a sharp lower bound
on the support threshold for which V is a support lattice. Let T = (t1, . . . , t100) and
σ = (σ1, . . . , σ100) with

tj =

{ {a} for j = 1, . . . , 25
{b} for j = 26, . . . , 100

and σj =




0.1 for j = 1, . . . , 30
0.5 for j = 31, . . . , 51
0.0 for j = 52, . . . , 100

.

Hence
avg100(�σ�100) = 0.25 + ε > 0.0 = σ100

with ε = 0.005. Since support51({a}) < 0.5 = σ51 the algorithm is free to remove {a}
from V while processing transaction 51. Suppose {a} is removed from V . Since {a}
is not contained in any transaction after dropping {a} from V , the algorithm gets no
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indication to reinclude {a} in V . Hence {a} 
∈ V and therefore
avg100(�σ�100) = 0.25 + ε > 0.25 = support100({a})

is a sharp lower lower (by adapting the above example we can make ε arbitrarily
small).

3) ρi → σi for i → ∞ in typical scenarios: We envision as a typical scenario, that
the user initially changes the support threshold often, in reaction to the continously
generated association rules. After the user has found a satisfactory threshold we do
not expect further changes in the support threshold, i.e. σj = σj+1 = . . . for some
transaction index j. Hence

ρi → σi for i → ∞.

C Proof of Correctness for PhaseI

In this section we give a proof for the correctness of the PhaseI algorithm.
For convenience, we introduce the following conventions: Let I and K be some

sets. By K ⊆ I we denote set inclusion and by K ⊂ I strict set inclusion, i.e. K ⊂ I
if and only if K ⊆ I and K 
= I . By I\K we denote set exclusion, i.e. the set {x ∈
I |x 
∈ K}. By N we denote the natural numbers including 0 and by Z the integers.
For a real number x we denote by �x� the least integer greater or equal to x, i.e. �x� =
min{i ∈ Z |x ≤ i} and by 
x� the largest integer less or equal to x, i.e. 
x� = max{i ∈
Z |x ≥ i}. Let Vi for some i ∈ N be a sublattice of the subset lattice of I . For t ⊆ I let

subsetsi(t) := {v ∈ Vi | v ⊂ t } and supersetsi(t) := {v ∈ Vi | t ⊂ v }.
Note that t itself is neither contained in subsetsi(t) nor in supersetsi(t).

To facilitate the proof we state in the following definition the PhaseI algorithm in
its recursive form:

Definition 1 Let T = (t1, t2, . . .) be a transaction sequence relative to some set I
and let σ = (σ1, σ2, . . .) be a support sequence. We define a sublattice Vi of the subset
lattice of I and functions maxMissedi, firstT ransi : Vi → N and counti by induction
on i:

Let i = 0: Let V0 = {∅}, maxMissed0(∅) = 0, firstT rans0(∅) = 0 and count0(∅) =
0.

Let i > 0 and suppose we have defined Vj for all j < i:
For all v ∈ Vi−1 let
maxMissedi(v) = maxMissedi−1(v), firstT ransi(v) = firstT ransi−1(v)

and

counti(v) =

{
counti−1(v) if v 
⊆ ti
counti−1(v) + 1 if v ⊆ ti

.

Let
Ci = { v ⊆ ti | v 
∈ Vi−1 and ∀w ⊂ v : w ∈ Vi−1, maxSupporti(w) ≥ σi }

and
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Di ⊆ {v ∈ Vi−1 |maxSupporti(v) < σi}
such that if v ∈ Di then supersetsi−1(v) ⊆ Di.

Let Vi = (Vi−1 ∪ Ci)\Di. For v ∈ Vi\Vi−1 let

maxMissedi(v) = min{ 
(i− 1) · avgi−1(�σ�i−1)�+ |v| − 1,
maxMissedi−1(w) + counti−1(w) |
w ∈ subsetsi−1(v) },

counti(v) = 1 and firstT ransi(v) = i.

First, we assert the correctness of our recursive definition of PhaseI:

Lemma 1 Let T be a transaction sequence of length n and σ a support sequence. Let
V be the lattice computed by PhaseI(T, σ) and define Vn as in Definition 1. Define
Di in Definition 1 according to the pruning strategy chosen for PhaseI .

Then V = Vn and for each v ∈ V the corresponding associated integers are
equal, i.e. maxMissed(v) = maxMissedn(v), firstT rans(v) = firstT ransn(v) and
count(v) = countn(v).

Proof: By induction on n.

By the following lemma we can easily compute ceilings of a support sequence.

Lemma 2 Let σ = (σ1, σ2, . . .) be a support sequence. Then
�σ�1,1 = σ1 and �σ�1,j = 0 for j ≥ 2.

and for i > 1 we have

�σ�i,j =



�σ�i−1,j for j < i and �σ�i−1,j > σi

σi for j ≤ i and �σ�i−1,j ≤ σi

0 for j > i
.

Proof: By induction on i and the definition of support ceilings.

We summarize some observations on ceilings:

Lemma 3 Let σ = (σ1, σ2, . . .) be a support sequence and i a positive integer. Then

1. �σ�i+1,j ≥ �σ�i,j for all j,

2. avgj(�σ�i) ≥ σj for all j ≤ i,

3. avgj(�σ�i) ≥ avgj(�σ�j) for all j ≤ i,

Proof: By Lemma 2.

For a transaction sequence T and an itemset v we denote by countTi(v) the number
of occurences of v in the first i transactions of T .
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Lemma 4 Let T be a transaction sequence, σ a support sequence and i an integer.
Define Vi relative to T and σ as in Definition 1. Let v ∈ Vi. Then

counti(v) = countTi(v)− countTfirstT ransi(v)−1(v)
and v ⊆ tfirstT ransi(v).

Proof: By induction on i.

Lemma 5 Let T be a transaction sequence, σ a support sequence and i an integer.
Define Vi relative to T and σ as in Definition 1. Let v, w ∈ Vi and w ⊆ v. Then

maxMissedi(w) ≤ maxMissedi(v),
firstT ransi(w) ≤ firstT ransi(v),

counti(w) ≥ counti(v),
maxMissedi(w) + counti(w) ≥ maxMissedi(v) + counti(v).

Proof: By Definition 1 and induction on i.

Lemma 6 Let T be a transaction sequence, σ a support sequence and i an integer.
Define Vi relative to T and σ as in Definition 1. Suppose v ∈ Vi and w ⊆ v. Then

w ∈ Vi.

Proof: Let T = (t1, t2, . . .) be a transaction sequence and σ = (σ1, σ2, . . .) a
support sequence. Let v ∈ Vi and w ⊆ v. We may assume, without loss of generality,
that w ⊂ v. We prove Lemma 6 by induction on i.

Let i = 0. Hence v = ∅ = w. Thus Lemma 6 holds trivially.
Let i ≥ 1 and suppose Lemma 6 holds for all Vj with j < i.
1) Suppose v ∈ Vi−1. Hence w ∈ Vi−1 by the induction hypothesis. Since v ∈ Vi we

have v 
∈ Di. Thus w is also not in Di because otherwise v ∈ supersetsi−1(w) ⊆ Di,
in contradiction to v ∈ Vi. Therefore w ∈ Vi.

2) Suppose v 
∈ Vi−1 and w ∈ Vi−1. By v ∈ Vi we have v ⊆ ti and v ∈ Ci. Since
w ⊂ v we have w ∈ subsetsi−1(v) and therefore maxSupporti(w) ≥ σi since v ∈ Ci.
Thus w 
∈ Di and since w ∈ Vi−1 we have w ∈ Vi.

3) Suppose v 
∈ Vi−1 and w 
∈ Vi−1. By v ∈ Vi we have v ⊆ ti and v ∈ Ci. Since
w ⊂ v we get w ∈ Vi−1 by Definition 1, in contradiction to w 
∈ Vi−1. Hence this case
does not occur.

Lemma 7 Let T be a transaction sequence, σ a support sequence and i an integer.
Define Vi relative to T and σ as in Definition 1. Then ∅ ∈ Vi, maxMissedi(∅) = 0,
firstT ransi(∅) = 0 and counti(∅) = i.

Proof: By induction on i since ∅ is a subset of all transactions in T .
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Proposition 1 Let T be a transaction sequence relative to some set I , σ a support
sequence and Vi a support lattice relative to T and σ up to some positive integer i.
Let v be a subset of I .

1. If v ∈ Vi then countTfirstT ransi(v)−1(v) ≤ maxMissedi(v)

2. If supporti(v) > avgi(�σ�i) + |v|−1
i

then v ∈ Vi.

Proof: Let T = (t1, t2, . . .) be a transaction sequence relative to some set I ,
σ = (σ1, σ2, . . .) a support sequence and v a subset of I . We prove Proposition 1 by
double induction on c = |v| and on i:

Let c = 0. Hence v = ∅. Thus Proposition 1 holds for all i by Lemma 7.
Let c ≥ 1. Suppose Proposition 1 holds for all subsets of I with less than c

elements and all i. Let v ⊆ I such that c = |v|. We show by induction on i that 1.
and 2. hold.

Let i = 1.
1. Let v ∈ V1. By Definition 1 we have V1 = {∅} ∪ ⋃

a∈t1{a} and
maxMissed1(v) = 0 = countT0(v)

for all v ∈ V1. Hence 1. holds for i = 1.
2. Let support1(v) > avg1(�σ�1) + |v|−1

1
. Since c ≥ 1 we have

1 ≥ support1(v) > avg1(�σ�1) + c− 1 ≥ 0.
Hence c = 1. Since support1(v) > 0 we get v ⊆ t1. Hence v ∈ V1 = {∅} ∪ ⋃

a∈t1{a}.
Let i > 1. Suppose 1. and 2. hold for all i if v ⊆ I contains less than c elements

and up to i− 1 if v contains c elements. We show that 1. and 2. hold for i as well if
v contains c elements:

1. Let v ∈ Vi and |v| = c.
i) Suppose v ∈ Vi−1. Thus we get by firstT ransi−1(v) = firstT ransi(v) and the

induction hypothesis
countTfirstT ransi(v)−1(v) ≤ maxMissedi−1(v) = maxMissedi(v).

ii) Suppose v 
∈ Vi−1 and there exists a set w ∈ subsetsi−1(v) such thatmaxMissedi(v) =
maxMissedi−1(w) + counti−1(w). Since w ⊂ v we have by the induction hypothesis
for 1. and Lemma 4

countTi−1(v) ≤ countTi−1(w) ≤ maxMissedi−1(w) + counti−1(w).
Since v 
∈ Vi−1 but v ∈ Vi we have v ⊆ ti. By Definition 1 we therefore get

countTi(v) = countTi−1(v) + 1 ≤ maxMissedi−1(w) + counti−1(w) + 1

= maxMissedi(v) + 1

= maxMissedi(v) + counti(v).

Hence 1. follows by Lemma 4 for this case.
iii) Suppose v 
∈ Vi−1 and no vertexw ∈ subsetsi−1(v) exists such thatmaxMissedi(v) =

maxMissedi−1(w) + counti−1(w). Hence v ∈ Ci,
maxMissedi(v) = 
(i− 1) · avgi−1(�σ�i−1)�+ c− 1,

22



and firstT ransi(v) = i. Suppose countTi−1(v) > maxMissedi(v). Since countTi−1(v) ∈
N we get by the above equality

supporti−1(v) > avgi− 1�σ�i−1 +
c−1
i−1

.
Thus v ∈ Vi−1 by the induction hypothesis for 2., in contradiction to v 
∈ Vi−1. Hence
countTi−1(v) ≤ maxMissedi(v).

2. Let v ⊆ I such that |v| = c and supporti(v) > avgi(�σ�i) + c−1
i
.

i) Suppose v 
⊆ ti. By Lemma 3 we get

countTi−1(v) = countTi(v) = i · supporti(v)
> i · avgi(�σ�i) + c− 1

=
i∑

j=1

�σ�i,j + c− 1

≥
i−1∑
j=1

�σ�i−1,j + c− 1

= (i− 1) · avgi−1(�σ�i−1) + c− 1.

Hence supporti−1(v) > avgi−1(�σ�i−1) +
c−1
i−1

. By the induction hypothesis for 2. we
get v ∈ Vi−1. By the induction hypothesis for 1. and by v 
⊆ ti we get

maxMissedi−1(v) + counti−1(v) ≥ countTi−1(v) > i · avgi(�σ�i) + c− 1.
Also by v 
⊆ ti we have

maxMissedi(v) + counti(v) = maxMissedi−1(v) + counti−1(v).
Hence

maxMissedi(v) + counti(v) > i · avgi(�σ�i) + c− 1. (6)

Suppose v ∈ Di. Hence i · σi > maxMissedi(v) + counti(v) and therefore
i · avgi(�σ�i) > maxMissedi(v) + counti(v)

by Lemma 3, in contradiction to inequality (6). Hence v 
∈ Di and therefore v ∈ Vi.
ii) Suppose v ⊆ ti and v ∈ Vi−1. Since v ⊆ ti we have counti(v) = counti−1(v)+1.

Since v ∈ Vi−1 we get by the induction hypothesis for 1. and Lemma 4

maxMissedi(v) + counti(v) = maxMissedi−1(v) + counti−1(v) + 1

≥ countTi−1(v) + 1 = countTi(v)

> i · avgi(�σ�i) > i · σi

Hence maxSupporti(v) > σi. If v ∈ Di then maxSupporti(v) < σi, a contradiction.
Thus v 
∈ Di and v ∈ Vi.

iii) Suppose v ⊆ ti and v 
∈ Vi−1. Let w be a subset of v of cardinality c− 1. By
w ⊂ v ⊆ ti we have

countTi−1(w) + 1 = countTi(w) ≥ countTi(v)

> i · avgi(�σ�i) + c− 1
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=
i∑

j=1

�σ�i,j + c− 1

≥
i−1∑
j=1

�σ�i−1,j + c− 1

= (i− 1) · avgi−1(�σ�i−1) + c− 1

Thus supporti−1(w) > avgi−1(�σ�i−1) +
c−2
i−1

and therefore w ∈ Vi−1 by the induction
hypothesis for 2. By Lemma 6 all subsets u ⊂ v are therefore elements of Vi−1. By
the induction hypothesis for 1. we get

maxMissedi(u) + counti(u) ≥ countTi(u) ≥ countTi(v)

> i · avgi(�σ�i) ≥ i · σi

for all u ⊂ v. Hence v is an element of Ci and therefore of Vi.

Theorem 2 Let T be a transaction sequence of length n, σ a support sequence and
V the subset lattice computed by PhaseI(T, σ). Then for any itemset v

supportn(v) > avgn(�σ�n) + |v|−1
n

implies v ∈ V .
Let c = max{|v| for v ∈ V with maxSupport(v) ≥ σn}, i.e. the maximal cardinality
of all potentially large itemsets in V . Then V is a support lattice up to n relative to
T and support threshold

avgn(�σ�n) + c+1
n
.

Proof: Let T = (t1, . . . , tn) be a transaction sequence relative to some set I ,
σ = (σ1, . . . , σn) a support sequence and let Vn be the lattice defined by Definition 1
with Di defined according to the pruning strategy chosen for PhaseI . By Lemma 1
it suffices to proof Theorem 2 for Vn. Let v be a subset of I . By Proposition 1 we
have v ∈ Vn if

supportn(v) > avgn(�σ�n) + |v| − 1

n
. (7)

By Lemma 4 and Proposition 1 we get that Vn is a support lattice up to n relative to
T . Let c = max{|v| : v ∈ V,maxSupport(v) ≥ σn}. By Lemma 7 we may assume,
without loss of generality, that c ≥ 1. We show that Vn is a support lattice relative
to the support threshold

avgn(�σ�n) + c+1
n
.

Let v be a subset of I such that supportn(v) ≥ avgn(�σ�n)+ c+1
n
. Suppose |v| ≥ c+1.

Thus v contains a subset w of cardinality c + 1. Since supportn(w) ≥ supportn(v)
inequality (7) holds for w and thereby w ∈ Vn, in contradiction to the definition of c.
Hence |v| ≤ c. Since inequality (7) holds for this case we get v ∈ Vn. Hence Vn is a
support lattice relative to the support threshold avgn(�σ�n) + c+1

n
.
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D PhaseII with Forward Pruning

We extend the PhaseII algorithm described Subsection 6.1 by a “forward pruning”
technique. With this technique we can remove during the second scan some small
singleton set v and its descendants from V before we reach firstT rans(v), even if
maxSupport(v) ≥ σn. Thereby we reduce the size of the lattice as well as number of
transactions which need to be rescanned, speeding up the second phase. The general
idea is the following:

Let v be a singleton set in V and suppose supportn(v) ≥ σn. Suppose we are
rescanning the i-th transaction. Thus there are at least �n ·σn�− count(v) occurences
of v in ti+1, . . . , tft−1 with ft = firstT rans(v). Suppose that v was not contained
in V after the i-th transaction was processed by PhaseI. At the first occurence of v
after ti, PhaseI inserts v in V with maxMissed(v) ≥ 
i · avgi(�σ�i)�, since v is a
singleton. The insertion of v in V is guaranteed to take place, since its only subset is
the emptyset which always has support 1. By an induction on ft− i we get that if

�n · σ� − count(v) + 
i · avgi(�σ�i)� > 
(ft− 1)avgft−1(�σ�ft−1)� (8)

then v had to be in V while the ft-th transaction was processed by PhaseI, c.f.
Lemma 8. This is in contradiction to the insertion of v in V by PhaseI during the ft-
th transaction. Hence supportn(v) < σn and we prune v and all its descendents from
V while PhaseII processes the i-th transaction. Note that this arguments requires
that v 
∈ V at the i-th transaction in PhaseI and that inequality (8) holds. The
following Theorem 3 asserts the correctness of our “forward pruning” technique:

Theorem 3 Let T be a transaction sequence of length n, σ = (σ1, . . . , σn) a sup-
port sequence and V the support lattice returned by PhaseI( T , σ ). Let ft =
firstT ransn(v) and i some index < ft. If v is a singelton set which does not occur
in the first i transactions and

�n · σn� − count(v) + 
i · avgi(�σ�i)� > 
(ft − 1)avgft−1(�σ�ft−1)�
then

supportn(v) < σn.

Proof: see Theorem 4 in Subsection D.2.

For a straight forward generalization of Theorem 3 to a set v of arbitrary cardi-
nality we need to know: 1) that v 
∈ V at the i-th transaction of PhaseI and 2) that
PhaseI inserts v in the support lattice before transaction ft if the inequality holds.
However, for non-singleton sets, this requires knowledge about the PhaseI pruning
strategy. For the PhaseI pruning strategy used in Subsection 5.2 this knowledge is
avilable and we might use it to derive a corresponding forward pruning technique for
2-itemsets. Nonetheless this knowledge is in general not available.
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D.1 PhaseII Algorithm with Forward Pruning

Adding the forward pruning technique to the PhaseII algorithm described in Subsec-
tion 6.1 we get our extended PhaseII algorithm:

Function PhaseII( support lattice V , transaction sequence (t1, . . . , tn),
support sequence σ ) : support lattice;

integer ft, i = 0;
begin
V := V \{v ∈ V |maxSupport(v) < σn };
while ∃v ∈ V : i < firstT rans(v) do
i++;
for all v ∈ V do
ft := firstTrans(v);
if v ⊆ ti and ft < i then count(v)++, maxMissed(v)- -; fi;
if ft = i then
maxMissed(v) := 0;
for all w ∈ V : v ⊂ w and maxSupport(w) > maxSupport(v) do
maxMissed(w) := count(v)− count(w);

od;
fi;
if maxSupport(v) < σn then V := V \{v}; fi;
if |v| = 1 and v does not occur in t1, . . . , ti and
�n · σn� − count(v) + 
i · avgi(�σ�i)� > 
(ft− 1)avgft−1(�σ�ft−1)�

then
V := V \{w ∈ V | v ⊆ w };

fi;
od; od;
return V ;

end; Figure 5

D.2 Proof of PhaseII with Forward Pruning

In this subsection we give a proof dor the correctness of the PhaseII algorithm with
forward pruning. We use the same notation as in Appendix C.

Lemma 8 Let T be a transaction sequence, σ a support sequence and Vj for j ≥ 1 a
support lattice relative to T and σ up to j. Suppose the singelton itemset {a} is not
contained in Vi and

countTn({a})− countTi({a}) + 

i∑

k=1

�σ�i,k� > 

n∑

k=1

�σ�n,k� (9)
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for some positive integers i and n with i ≤ n. Then
{a} ∈ Vn.

Proof: We prove Lemma 8 by induction on d = n − i. Let T = (t1, t2, . . .) and
σ = (σ1, σ2, . . .). Let n ≥ i, a ∈ I such that {a} 
∈ Vi and suppose that inequality (9)
holds. For d = 0 the inequality is never satisfied and thus Lemma 8 holds trivially.
Let d = 1. Hence n = i+1. Since

∑n
k=1 �σ�n,k ≥ ∑i

k=1 �σ�i,k we get by inequality (9)
countTi+1({a})− countTi({a}) ≥ 1.

Thus a ∈ ti+1. By {a} 
∈ Vi and Definition 1 we get {a} ∈ Vi+1 = Vn. Hence Lemma
8 holds for this case.

Let d > 1 and suppose Lemma 8 holds if n− i < d.
Suppose a 
∈ ti+1. Hence countTi+1({a}) = countTi({a}). Thus Lemma 8 holds

for this case by the induction hypothesis.
Suppose a ∈ ti+1. Since {a} 
∈ Vi we have {a} ∈ Vi+1 and



i∑

k=1

�σ�i,k� ≤ maxMissedi+1({a}) (10)

by Definition 1. If {a} ∈ Vj for all j = i + 2, . . . , n then Lemma 8 holds trivially.
Suppose that there exists an index j such that {a} 
∈ Vj. We may assume, without
loss of generality, that j is minimal. Hence {a} ∈ Dj with Dj defined as in Definition
1. Thus

countj({a}) +maxMissedj({a}) < j · σj.
Since j is minimal we have maxMissedi+1({a}) = maxMissedj({a}). Together with
the above inequality and (10) we have

countj({a}) + 
∑i
k=1 �σ�i,k� < j · σj.

Hence we get by Lemma 3 and Lemma 4
countTj({a})− countTi({a}) + 
∑i

k=1 �σ�i,k� < 
j · σj� ≤ 
∑j
k=1 �σ�j,k�.

By (9) we now have

countTn({a})− countTi({a}) + 

i∑

k=1

�σ�i,k�

− countTj({a}) + countTi({a})− 

i∑

k=1

�σ�i,k�

> 

n∑

k=1

�σ�n,k� − 

j∑

k=1

�σ�j,k�

yielding countTn({a}) − countTj({a}) + 
∑j
k=1 �σ�j,k� > 
∑n

k=1 �σ�n,k�. Since j > i
we get {a} ∈ Vn by the induction hypothesis.
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Theorem 4 Let T be a transaction sequence, σ a support sequence and V the support
lattice returned by PhaseI( T , σ ). Let v ∈ V be a singleton set, i.e. |v| = 1,
ft = firstT ransn(v) and countTi(v) = 0 for some positive integer i < ft. If

�n · σn� − count(v) + 
i · avgi(�σ�i)� > 
(ft − 1)avgft−1(�σ�ft−1)� (11)

then
supportn(v) < σn.

Proof: Let {a} ∈ Vn, ft = firstT ransn({a}) > 1 and countTi({a}) = 0. Suppose
(11) holds and supportn({a}) ≥ σn. Hence countTn({a}) ≥ �n · σn� and therefore
countTft−1({a}) ≥ �n · σn� − countn({a}) by Lemma 4. Since countTi({a}) = 0 we
get by inequality (11)

countTft−1({a})− countTi({a}) + 
∑i
k=1 �σ�i,k� > 
∑ft−1

k=1 �σ�ft−1,k�.
Hence {a} is an element of Vft−1 by Lemma 8. Since firstT ransn({a}) = ft we have
{a} ∈ Vft\Vft−1, in contradiction to {a} ∈ Vft−1. Thus

supportn({a}) < σn.
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